Belfast Telegraph

Saturday 27 December 2014

Cern physicists: We found Higgs boson with Large Hadron Collider

Scientists confident of breakthrough

Physicists say they are confident they have discovered the 'God particle' (AP/CERN)
Physicists say they are confident they have discovered the 'God particle' (AP/CERN)
Large Hadron Collider
A scientist looks at pictures of the first collisions at full power at Cern in Meyrin near Geneva (AP/Keystone/Salvatore Di Nolfi)
A physicist at the European Centre for Nuclear Research shows how a Higgs boson may look (AP)
The European Organisation for Nuclear Research, CERN, is illuminated outside Geneva, Switzerland (AP/Anja Niedringhaus)
Physicists have hailed the discovery of the Higgs boson
Scientists at Cern say they have found a sub-atomic particle 'consistent' with the Higgs boson (Cern/PA)
Scientists at the CERN Large Hadron Collider (pictured) have announced that they have discovered a new particle that could be the Higgs boson
Super. Smashing. Great: Scientists delighted as LHC fires up
Spectators look at the ATLAS detector construction (a Toroidal LHC Apparatus) at the CERN (Centre Europeen de Recherche Nucleaire) near Geneva, Switzerland, Thursday, May 31, 2007. The detector will be placed around the large hadron collider (LHC), CERN's highest energy particle accelerator. ATLAS is a general-purpose detector designed to measure the broadest possible range of particles and physical processes that could result from the collision of the proton beams within the LHC. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
View of the LHC (large hadron collider) in its tunnel at CERN (European particle physics laboratory) near Geneva, Switzerland, Thursday, May 31, 2007. The LHC is a 27-kilometre-long underground ring of superconducting magnets housed in this pipe-like structure or cryostat. The cryostat is cooled by liquid helium to keep it at an operating temperature just above absolute zero. It will accelerate two counter-rotating beam of protons to an energy of 7 tera electron volts (TeV) and then bring them to collide head on. Several detectors are being built around the LHC to detect the various particles produced by the collision. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
**FILE**This March 22, 2007 file photo, shows the magnet core of the world's largest superconducting solenoid magnet (CMS, Compact Muon Solenoid) at the European Organization for Nuclear Research (CERN)'s Large Hadron Collider (LHC) particle accelerator, which is scheduled to be switched on in November, in Geneva, Switzerland. Some 2,000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector. (AP Photo/Keystone, Martial Trezzini, file)
Spectators look at the ATLAS detector construction (a Toroidal LHC Apparatus) at the CERN (Centre Europeen de Recherche Nucleaire) near Geneva, Switzerland, Thursday, May 31, 2007. The detector will be placed around the large hadron collider (LHC), CERN's highest energy particle accelerator. ATLAS is a general-purpose detector designed to measure the broadest possible range of particles and physical processes that could result from the collision of the proton beams within the LHC. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)

Scientists in Geneva say the new sub-atomic particle that could explain one of the great mysteries of the Universe – why matter has mass – has almost certainly been found according to further evidence supporting the discovery of the elusive Higgs boson.

The physicists at the European Organisation for Nuclear Research (Cern) said yesterday they are increasingly confident that they have finally found the Higgs particle nearly 50 years after it was first proposed by Professor Peter Higgs of Edinburgh University.

 

Further analysis of data gathered by Cern’s Large Hadron Collider (LHC) show that the new sub-atomic particle announced last summer bears one of the classic signatures of the proposed Higgs boson – it does not spin or rotate like all other known sub-atomic particles.

 

The fact that this new particle is “spin zero”, combined with further evidence based on the way it decays into other known sub-atomic particles, is a convincing indication that it is indeed the Higgs boson, said Professor Dave Charlton of Birmingham University, a spokesman for the LHC’s Atlas experiment.

 

“It looks more and more likely that we really have found the Higgs particle, although it’s always difficult to say this with absolute certainty. Most physicists would now agree that this is probably the Higgs,” Professor Charlton said.

 

Professor Higgs, along with other colleagues, first suggested in the 1960s that a sub-atomic particle must pervade the Universe and create an invisible field on which matter interacts to give it mass, whether it is people or planets.

 

It has only been in recent years that particle physicists have been able to build a particle accelerator big enough to produce the energies needed to create the sort of sub-atomic collisions that would shake out the Higgs particle to reveal its identity.

 

The LHC produced enough high-energy collisions for physicists to begin to see tantalising hints of the Higgs last summer. Since then, that have trawled through the data to produce further evidence, released today at the Moriond Conference in La Thuile, Italy.

 

“The preliminary results with the full 2012 data set are magnificent and to me it is clear that we are dealing with a Higgs boson though we still have a long way to go to know what kind of Higgs boson it is,” said Joe Incandela, a spokesman for the CMS experiment on the LHC.

 

The Standard Model of physics, which attempts to unify many of the disparate forces of nature, from weak electrostatic interactions to the strong nuclear forces at the heart of the atom, suggests that the Higgs will have certain properties. But further work is needed to see whether the new particle conforms to this prediction, Professor Charlton said.

 

“The spin-zero finding tells us it is a Higgs particle but the question of whether it is the Standard Model Higgs or a more exotic particle remains open. We’ve only just started down that road, although at the moment it is consistent with the Standard Model,” Professor Charlton said.

 

Geoff Hall, professor of physics at Imperial College in London said: “The results are an indication of further excellent progress with the analysis of the data taken last year and the superb performance of the LHC accelerator and experiments. Nothing has emerged which conflicts with the assignment of the new particle as a Higgs boson.”

COMMENT RULES: Comments that are judged to be defamatory, abusive or in bad taste are not acceptable and contributors who consistently fall below certain criteria will be permanently blacklisted. The moderator will not enter into debate with individual contributors and the moderator’s decision is final. It is Belfast Telegraph policy to close comments on court cases, tribunals and active legal investigations. We may also close comments on articles which are being targeted for abuse. Problems with commenting? customercare@belfasttelegraph.co.uk

Latest News

Latest Sport

Latest Showbiz