Belfast Telegraph

Monday 29 December 2014

Mankind’s greatest experiment begins as the Large Hadron Collider powers up

The cost is huge, the scale is massive – and the discoveries could be enormous. But, asks Andy McSmith, what does it all add up to?

This March 22, 2007 file photo shows the magnet core of the world's largest superconducting solenoid magnet (CMS, Compact Muon Solenoid) at the European Organization for Nuclear Research (CERN)'s Large Hadron Collider (LHC) particle accelerator
**ADVANCE FOR SUNDAY, JUNE 29--FILE** In this March 22, 2007 file photo, the magnet core of the world's largest superconducting solenoid magnet (CMS, Compact Muon Solenoid) at the European Organization for Nuclear Research (CERN)'s Large Hadron Collider (LHC) particle accelerator, which is scheduled to switch on in November 2007, in Geneva, Switzerland. Some 2000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector. (AP Photo/Keystone, Martial Trezzini, file)
Spectators look at the ATLAS detector construction (a Toroidal LHC Apparatus) at the CERN (Centre Europeen de Recherche Nucleaire) near Geneva, Switzerland, Thursday, May 31, 2007. The detector will be placed around the large hadron collider (LHC), CERN's highest energy particle accelerator. ATLAS is a general-purpose detector designed to measure the broadest possible range of particles and physical processes that could result from the collision of the proton beams within the LHC. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
**FILE**This March 22, 2007 file photo, shows the magnet core of the world's largest superconducting solenoid magnet (CMS, Compact Muon Solenoid) at the European Organization for Nuclear Research (CERN)'s Large Hadron Collider (LHC) particle accelerator, which is scheduled to be switched on in November, in Geneva, Switzerland. Some 2,000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector. (AP Photo/Keystone, Martial Trezzini, file)
View of the LHC (large hadron collider) in its tunnel at CERN (European particle physics laboratory) near Geneva, Switzerland, Thursday, May 31, 2007. The LHC is a 27-kilometre-long underground ring of superconducting magnets housed in this pipe-like structure or cryostat. The cryostat is cooled by liquid helium to keep it at an operating temperature just above absolute zero. It will accelerate two counter-rotating beam of protons to an energy of 7 tera electron volts (TeV) and then bring them to collide head on. Several detectors are being built around the LHC to detect the various particles produced by the collision. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
Spectators look at the ATLAS detector construction (a Toroidal LHC Apparatus) at the CERN (Centre Europeen de Recherche Nucleaire) near Geneva, Switzerland, Thursday, May 31, 2007. The detector will be placed around the large hadron collider (LHC), CERN's highest energy particle accelerator. ATLAS is a general-purpose detector designed to measure the broadest possible range of particles and physical processes that could result from the collision of the proton beams within the LHC. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
Spectators look at the ATLAS detector construction (a Toroidal LHC Apparatus) at the CERN (Centre Europeen de Recherche Nucleaire) near Geneva, Switzerland, Thursday, May 31, 2007. The detector will be placed around the large hadron collider (LHC), CERN's highest energy particle accelerator. ATLAS is a general-purpose detector designed to measure the broadest possible range of particles and physical processes that could result from the collision of the proton beams within the LHC. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
Employees inspect the ATLAS detector construction (a Toroidal LHC Apparatus) at the the CERN (Centre Europeen de Recherche Nucleaire) near Geneva, Switzerland, on Thursday, May 31, 2007. The detector will be placed around the large hadron collider (LHC), CERN's highest energy particle accelerator. ATLAS is a general-purpose detector designed to measure the broadest possible range of particles and physical processes that could result from the collision of the proton beams within the LHC. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
View of the LHC (large hadron collider) in its tunnel at CERN near Geneva

It was Oscar Wilde who declared that "all art is useless" – which was not a condemnation, but a proclamation. If you want to create something of beauty, he meant, do not be distracted by people who ask what it is for.

On that basis, whatever emerges from the £4.4bn experiment that begins today in the vast complex built at the Cern – The European Organisation for Nuclear Research – laboratory near Geneva, where infinitesimally small particles travelling at mind-boggling speeds will crash together with so much force that they almost replicate the Big Bang, could be called the most expensive work of art in human history.



Mathematicians and physicists have a sense of the aesthetic, as surely as poets and dramatists. In Einstein's theory of relativity or Kepler's laws of planetary motion, they see works of great simplicity and beauty. What they long for now is a simple and beautiful "theory of everything" that will explain the whole of physics, from the movement of galaxies to the behaviour of subatomic particles, because there is a hole in theoretical physics which causes more distress to the 6,500 scientists working on Cern's Large Hadron Collider (LHC) than the scary speculation about the black hole that some people think will swallow up earth if their experiment goes wrong.



At present, anything big enough for us to see, from a star to a speck of dust, is known to obey one set of physical laws, but at the subatomic level, among those unimaginably tiny particles that are the building blocks of the universe, another set of laws apply. No one has definitively reconciled the two.





Moreover, the best explanation the human race has so far devised for explaining the behaviour of subatomic particles, the so-called Standard Model, is not a work of art, it is a monstrosity. Whereas Einstein's equation relating mass to energy is expressed in just characters, E=mc2, writing out the Standard Model goes on for page after ugly page of symbols.



And even then, it leaves an awkward gap. Put it this way: if you walked beneath the window of a school classroom, and a pupil dropped a feather on your head, you would not mind; but if he dropped a brick, that would hurt, because a brick is heavy and a feather is light. But not according to the Standard Model, because nowhere in the theory is there any indication that particles have mass. Down there among the subatomic particles, all is seemingly weightless. That is very annoying for those great artists who poke at the boundaries of theoretical physics. They want to know why, in the trillionth of a second after it all began with the Big Bang, stuff came into existence where there had been no stuff before. One answer, worked out in theory, assumes the existence of something called the Higgs boson, or more fancifully, the God particle.



To you or me, Higgs boson – if it exists – is so unimaginably tiny that it is no surprise no instrument has found it; but in the subatomic world, it is a monster, a particle so much vaster than all those quarks, Z bosons and other subatomic oddities that it can only exist for an immeasurable fraction of a second before it disintegrates.



Even the LHC will not catch a Higgs boson, if it exists. What the physicists expect, however, is that the machinery will pick up proof that a Higgs boson was there for a fraction of a microsecond, from the debris left behind from its disintegration.



If that happens, science has taken a giant leap forward. We will know something that previously we only supposed. Conversely, if the vast experiment at Cern does not produce a Higgs boson, the theoretical physicists will have to retrace their steps and think a whole new explanation for life, the universe and everything. But cosmologists – who study the biggest things in the universe – are hoping that the unprecedented experiment in Geneva will uncover "supersymmetric particles", because if they exist, they turn the key to one of the great mysteries of outer space – why are galaxies 10 times heavier that they appear to be?

CERN prepares new atom smasher to study Big Bang



There are two ways of estimating the total mass of a galaxy. You can either study what you can see, and deduce its total mass, or you can study the movement of the stars on the outermost edge of the galaxy, and calculate the gravitational pull. It has been done many times, and each time one of the two methods is used it produces a different result from the other. The discrepancies have been so consistent that the only satisfactory answer is that there is a vast amount of matter in the universe that has mass, but which cannot be seen or detected.



In truth we cannot know what the experiment will throw up. When the particles start to collide in the LHC in October, they will generate an energy that will be like concentrating the energy from a head on collision between two high-speed electric trains into a pinpoint. The theory that the world will vanish in a black hole is only one of the fanciful suppositions about what will happen next. Another is that time travellers will use the wormhole in the space-time continuum generated in the LHC to pay us a visit. Professor Keith Mason, chief executive of the Science and Technology Facilities Council said: "I believe we are poised on the threshold of a new age of physics. Scientists waiting for the LHC dare to ask the biggest questions that exist in modern science. They want to test our understanding of the universe and find out if dark matter exists, whether the four dimensions of space-time are it or in fact there are eleven dimensions! They want to know why some particles have mass and some, like particles of light, don't.



"Using the four detectors... we will be able to look at these mysteries that go to the fundamental nature of the universe."



To the question "what is the use of it all?", the short answer is that it is "useless – but not for long". "No one knows exactly what new fields of knowledge the LHC will open up to us," says Dr Robert Kirby-Harris, chief executive of the Institute of Physics. But he forecasts that; "the technological payback will be huge. The need to deal with the vast quantities of data the LHC will produce has already resulted in new grid technology to increase storage and capacity, and improve the capacity of the internet to carry more and more data. And I have no doubt that this will encourage more school students to study physics – exactly what the UK needs to ensure a vibrant future."



And anyone who objects to having nearly £5bn of European taxpayers' money spent on a plaything for boffins should consider this: years ago, the scientists at Cern wanted to improve the means by which they communicated by computer with other scientists around the world, so they designed the World Wide Web. Then they gave the technology away, for nothing. Consider how much money has been made from that free gift... and stop complaining.

The Big Bang Machine 1/5

The Big Bang Machine 2/5

The Big Bang Machine 3/5

The Big Bang Machine 4/5

The Big Bang Machine 5/5

Cern employees release LHC rap video

The Large Hadron Collider: End of the world, or God's own particle?

A bewildered Cole Moreton goes in search of the science behind the spin...

Yes, but what is it? That has been many people's reaction to the furore over the Large Hadron Collider. The biggest, most expensive experiment in history is attracting both scientific hyperbole and hysteria. Some say it will reveal the universe's secrets and lead to the elusive Theory of Everything. A few fear that unleashing unimaginable power beneath the Swiss countryside will result in the end of the world. But how? And what do all these words mean?

Large

Is an understatement. A giant circular tunnel, with several loops, stretches for 27km under the land between France and Switzerland. One of its experimental chambers is bigger than the nave of Westminster Abbey.

Hadron

The name for one of the types of particle that make up an atom. These tiny bits of energy will be propelled by giant magnets around the tunnel circuit at almost the speed of light.

Collide

Is what they will do when they meet other hadrons being beamed in the opposite direction, at the same great speed. The resulting explosion will create 100,000 times more heat than the sun, apparently. Thankfully, it will only happen for a moment, in an area a billion times smaller than a speck of dust.

Cern

Pronounced "sern". The French acronym for the European Organisation for Nuclear Research, which built the £5bn collider. The money came from 20 countries, including Britain, which has played a leading role.

The Big Bang

Is what they are trying to recreate. Or rather what happened a trillionth of a second after the universe was created by an explosion, 13.7 billion years ago. For that tiny moment, it is believed everything was molten plasma. This cooled to create everything we see around us. The hope is that by remaking the moment, in miniature, the scientists will be able to see things that are invisible now.

The God Particle

Big name, very small thing; and the first great discovery they hope to make. It is believed we have only detected a quarter of the particles in everything. We don't, for example, know why things have mass. (To get a feeling for what that is, hit yourself over the head with an inflatable hammer, then a real one. The one that hurts has more mass.) In 1964 Professor Peter Higgs of Edinburgh University predicted an unseen particle that provided mass (its official name is a Higgs boson). The hope is it will be detected for the first time. Other possible revelations include so-called dark matter, which in theory "stretches through space like an invisible skeleton".

The Theory of Everything

The Holy Grail of science. A unifying theory providing one explanation for the forces at work in the natural world, from the nucleus of an atom to the movements of the planets. Sounds like alchemy to non-scientists, but some very respectable minds believe it is possible, and that the collider may show the way.

The End of the World

Some scientists, on the other hand, went to the European Court for Human Rights to try to stop the collider being turned on. They fear it may create a black hole – which would certainly violate our rights by sucking the planet into... well we don't really know. Professor Sir Chris Llewellyn Smith of Cern says: "The chance we produce a black hole is minuscule." Which is not all that reassuring. But he adds: "Even if we do, it can't swallow up the Earth." It would be too small, and disappear in moments. In any case, they will only send the hadrons in one direction this week. The collisions start in October. Until then, at least, we're not all doomed.

COMMENT RULES: Comments that are judged to be defamatory, abusive or in bad taste are not acceptable and contributors who consistently fall below certain criteria will be permanently blacklisted. The moderator will not enter into debate with individual contributors and the moderator’s decision is final. It is Belfast Telegraph policy to close comments on court cases, tribunals and active legal investigations. We may also close comments on articles which are being targeted for abuse. Problems with commenting? customercare@belfasttelegraph.co.uk

Latest News

Latest Sport

Latest Showbiz