Belfast Telegraph

UK Website Of The Year

Cern's Large Hadron Collider back in action after weasel incident

By Gary Fennelly and PA

Published 09/05/2016

The Large Hadron Collider was immobilised by a weasel (Cern)
The Large Hadron Collider was immobilised by a weasel (Cern)
Scientists operating the Large Hadron Collider have succeeded in smashing together protons at 13 trillion electronvolts
The beam tunnel at the Large Hadron Collider (LHC) in Meyrin, Switzerland
European Center for Nuclear Research (CERN) scientists control computer screens showing traces on Atlas experiment of the first protons injected in the Large Hadron Collider (LHC) during its switch on operation at the Cern's press center on Wednesday, Sept. 10, 2008 near Geneva, Switzerland. Scientists fired a first beam of protons around a 27-kilometer (17mile) tunnel housing the Large Hadron Collider (LHC). They hope to recreate conditions just after the so-called Big Bang. The international group of scientists plan to smash particles together to create, on a small-scale, re-enactments of the Big Bang. (AP Photo/Fabrice Coffrini, Pool)
A European Center for Nuclear Research (CERN) scientist controls a computer screen showing traces on Atlas experiment of the first protons injected in the Large Hadron Collider (LHC) during its switch on operation at the Cern's press center on Wednesday, Sept. 10, 2008 near Geneva, Switzerland. Scientists fired a first beam of protons around a 27-kilometer (17 mile) tunnel housing the Large Hadron Collider (LHC). They hope to recreate conditions just after the so-called Big Bang. The international group of scientists plan to smash particles together to create, on a small-scale, re-enactments of the Big Bang. (AP Photo/Fabrice Coffrini, Pool)
Employees inspect the ATLAS detector construction (a Toroidal LHC Apparatus) at the the CERN (Centre Europeen de Recherche Nucleaire) near Geneva, Switzerland, on Thursday, May 31, 2007. The detector will be placed around the large hadron collider (LHC), CERN's highest energy particle accelerator. ATLAS is a general-purpose detector designed to measure the broadest possible range of particles and physical processes that could result from the collision of the proton beams within the LHC. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
Spectators look at the ATLAS detector construction (a Toroidal LHC Apparatus) at the CERN (Centre Europeen de Recherche Nucleaire) near Geneva, Switzerland, Thursday, May 31, 2007. The detector will be placed around the large hadron collider (LHC), CERN's highest energy particle accelerator. ATLAS is a general-purpose detector designed to measure the broadest possible range of particles and physical processes that could result from the collision of the proton beams within the LHC. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
Spectators look at the ATLAS detector construction (a Toroidal LHC Apparatus) at the CERN (Centre Europeen de Recherche Nucleaire) near Geneva, Switzerland, Thursday, May 31, 2007. The detector will be placed around the large hadron collider (LHC), CERN's highest energy particle accelerator. ATLAS is a general-purpose detector designed to measure the broadest possible range of particles and physical processes that could result from the collision of the proton beams within the LHC. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
View of the LHC (large hadron collider) in its tunnel at CERN (European particle physics laboratory) near Geneva, Switzerland, Thursday, May 31, 2007. The LHC is a 27-kilometre-long underground ring of superconducting magnets housed in this pipe-like structure or cryostat. The cryostat is cooled by liquid helium to keep it at an operating temperature just above absolute zero. It will accelerate two counter-rotating beam of protons to an energy of 7 tera electron volts (TeV) and then bring them to collide head on. Several detectors are being built around the LHC to detect the various particles produced by the collision. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
**FILE**This March 22, 2007 file photo, shows the magnet core of the world's largest superconducting solenoid magnet (CMS, Compact Muon Solenoid) at the European Organization for Nuclear Research (CERN)'s Large Hadron Collider (LHC) particle accelerator, which is scheduled to be switched on in November, in Geneva, Switzerland. Some 2,000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector. (AP Photo/Keystone, Martial Trezzini, file)
Spectators look at the ATLAS detector construction (a Toroidal LHC Apparatus) at the CERN (Centre Europeen de Recherche Nucleaire) near Geneva, Switzerland, Thursday, May 31, 2007. The detector will be placed around the large hadron collider (LHC), CERN's highest energy particle accelerator. ATLAS is a general-purpose detector designed to measure the broadest possible range of particles and physical processes that could result from the collision of the proton beams within the LHC. A pilot run of the LHC is scheduled for summer 2007. (KEYSTONE/Martial Trezzini)
**ADVANCE FOR SUNDAY, JUNE 29--FILE** In this March 22, 2007 file photo, the magnet core of the world's largest superconducting solenoid magnet (CMS, Compact Muon Solenoid) at the European Organization for Nuclear Research (CERN)'s Large Hadron Collider (LHC) particle accelerator, which is scheduled to switch on in November 2007, in Geneva, Switzerland. Some 2000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector. (AP Photo/Keystone, Martial Trezzini, file)

The Large Hadron Collider at Cern outside Geneva is back in action with scientists hoping data for 2016 will give us an improved understanding of fundamental physics.

On 25 March, the most powerful collider in the world was switched back on after its annual winter break but last week it was temporarily immobilised - by a weasel.

A visitor taking a photograph of a large backlit image of the Large Hadron Collider (LHC) at the Science Museum's Collider exhibition. PuppetLabs looks after the IT infrastructure for the colossal machine in Geneva
A visitor taking a photograph of a large backlit image of the Large Hadron Collider (LHC) at the Science Museum's Collider exhibition. PuppetLabs looks after the IT infrastructure for the colossal machine in Geneva

Operations were suspended last Thursday after the weasel invaded a transformer that helps power the machine and set off an electrical outage. Authorities say the incident was one of several small glitches that delayed plans to restart the collider by a few days.

Now officials of the European Organisation for Nuclear Research, known by its French acronym Cern, are gearing up for new data from the 17-mile circuit that runs underground on the Swiss-French border.

The accelerator complex and experiments have been fine-tuned using low-intensity beams and pilot proton collisions, and now the LHC and the experiments are ready to take an abundance of data.

Following a short commissioning period, the LHC operators will now increase the intensity of the beams so that the machine produces a larger number of collisions.

Cern Director for Accelerators and Technology, Frédérick Bordry said: "The LHC is running extremely well. We now have an ambitious goal for 2016, as we plan to deliver around six times more data than in 2015."

Fabiola Gianotti, Cern Director General said: "The restart of the LHC always brings with it great emotion. With the 2016 data, the experiments will be able to perform improved measurements of the Higgs boson and other known particles and phenomena, and look for new physics with an increased discovery potential."

This is the second year the LHC will run at a collision energy of 13 TeV. During the first phase of Run 2 in 2015, operators mastered steering the accelerator at this new higher energy by gradually increasing the intensity of the beams.

Beams are made of 'trains' of bunches, each containing around 100 billion protons, moving at almost the speed of light around the 27-kilometre ring of the LHC.

An upgrade has souped up the Large Hadron Collider
An upgrade has souped up the Large Hadron Collider

These bunch trains circulate in opposite directions and cross each other at the centre of experiments.

Last year, operators increased the number of proton bunches up to 2244 per beam, spaced at intervals of 25 nanoseconds. These enabled the ATLAS and CMS collaborations to study data from about 400 million million proton–proton collisions. In 2016, operators will increase the number of particles circulating in the machine and the squeezing of the beams in the collision regions.

The LHC will generate up to 1 billion collisions per second in the experiments.

"In 2015, we opened the doors to a completely new landscape with unprecedented energy. Now we can begin to explore this landscape in depth," said CERN Director for Research and Computing, Eckhard Elsen.

The Higgs boson was the last piece of the puzzle for the Standard Model – a theory that offers us the best description of the known fundamental particles and the forces that govern them. In 2016, the ATLAS and CMS collaborations – who announced the discovery of the Higgs boson in 2012 – will study this boson in depth.

But there are still several questions that remain unanswered by the Standard Model, such as why nature prefers matter to antimatter, and what dark matter consists of, despite it potentially making up one quarter of our universe.

The huge amounts of data from the 2016 LHC run will enable physicists to challenge these and many other questions, to probe the Standard Model further and to possibly find clues about the physics that lies beyond it.

The physics run with protons will last six months. The machine will then be set up for a four-week run colliding protons with lead ions.

The four largest LHC experimental collaborations, ALICE, ATLAS, CMS and LHCb, now start to collect and analyse the 2016 data. Their broad physics programme will be complemented by the measurements of three smaller experiments – TOTEM, LHCf and MoEDAL – which focus with enhanced sensitivity on specific features of proton collisions.

Online Editors

Your Comments

COMMENT RULES: Comments that are judged to be defamatory, abusive or in bad taste are not acceptable and contributors who consistently fall below certain criteria will be permanently blacklisted. The moderator will not enter into debate with individual contributors and the moderator’s decision is final. It is Belfast Telegraph policy to close comments on court cases, tribunals and active legal investigations. We may also close comments on articles which are being targeted for abuse. Problems with commenting? customercare@belfasttelegraph.co.uk

Read More