Belfast Telegraph

Home News World

Trio share Nobel chemistry prize

Three scientists have shared this year's Nobel Prize in chemistry for developing powerful computer models that researchers use to understand complex chemical interactions and create new drugs.

Research in the 1970s by Martin Karplus, Michael Levitt and Arieh Warshel has led to programs that unveil chemical processes such as how exhaust fumes are purified or how photosynthesis takes place in green leaves, the Royal Swedish Academy of Sciences said. That kind of knowledge makes it possible to find the best design for things like new drugs, solar cells or catalytic converters for cars.

The strength of the winning work is that it can be used to study all kinds of chemistry, the academy said.

All three are based in the US. Karplus is an 83-year-old US and Austrian citizen. Levitt, 66, is a British, US, and Israeli citizen . Warshel, 72, is a US and Israeli citizen.

Levitt said the award recognised him for work he had done when he was 20, before he even had his PhD. "It was just me being in the right place at the right time and maybe having a few good ideas.

"It's sort of nice in more general terms to see that computational science, computational biology is being recognized," he added. "It's become a very large field and it's always in some ways been the poor sister, or the ugly sister, to experimental biology."

Warshel said: "In short, what we developed is a way which requires computers to look, to take the structure of the protein and then to eventually understand how exactly it does what it does."

When scientists wanted to simulate complex chemical processes on computers, they used to have to choose between software that was based on quantum physics, which applies on the scale of an atom, or classical Newtonian physics, which operates at larger scales. The academy said the three laureates developed computer models that "opened a gate between these two worlds."

While quantum mechanics is more accurate, it is impossible to use on large molecules because the equations are too complex to solve. By using quantum mechanics only for key parts of molecules and classical physics for the rest, the blended approach delivers the accuracy of the quantum approach with manageable computations.

Working together at Harvard in the early 1970s, Karplus and Warshel developed a computer program that brought together classical and quantum physics. Warshel later joined forces with Levitt at the Weizmann institute in Rehovot, Israel, and Cambridge, to develop a program that could be used to study enzymes.

Jeremy Berg, a professor of computational and systems biology at the University of Pittsburgh, said the winning work gives scientists a way to understand complicated reactions that involve thousands to millions of atoms.

"There are thousands of laboratories around the world using these methods, both for basic biochemistry and for things like drug design," said Berg, former director of the National Institute of General Medical Sciences in Bethesda.

Many drug companies use computer simulations to screen substances for their potential as medicines, which lets them focus their chemistry lab work on those that look promising, he said.

-AP

Popular

From Belfast Telegraph